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Square vortex solitons with a large angular momentum
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We show the existence of square-shaped optical vortices with a large value of the angular momentum hosted
in finite-size laser beams which propagate in nonlinear media with a cubic-quintic nonlinearity. The light
profiles take the form of rings with sharp boundaries and variable sizes depending on the power carried. Our
stability analysis shows that these light distributions remain stable when they propagate, probably for unlimited
values of the angular momentum, provided the hosting beam is wide enough. This happens if the peak
amplitude approaches a critical value which only depends on the nonlinear refractive index of the material. A
variational approach allows us to calculate the main parameters involved. Our results add extra support to the
concept of surface tension of light beams that can be considered as a trace of the existence of a liquid of light.
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I. INTRODUCTION beam through cubic-quintic optical materigk9—21. This

In wave mechanics, a vortex is a screw phase dislocatior§iNd Of nonlinearity is characterized by the¥>0 and
or defect[1], where the amplitude of the field vanishes. TheX"® <O components of the nonlinear optical susceptibility
phase around the singularity has an integer number of wind@nd changes from self-focusing to self-defocusing at a given
ings, |, which plays the role of an angular momentum. Forintensity [22]. It has been recently shown that a gas-liquid
fields with nonvanishing boundary conditions, this number isphase transition takes place in light beams propagating in
a conserved quantity and governs the interactions betweghis type of material$23].
vortices as if they were endowed with electrostatic charges In this work, we will show that stable vortex states with a
[2]. Thus,| is usually called the “topological charge” of the huge value of the angular momentum exist and their peak
defect. amplitude and propagation constant tend asymptotically, as

\Vortices are present in very different branches of physicsthe beam flux is increased, to values that do not deperid on
such as fluid mechanics, superconductivity, Bose-Einsteifn this way, our results are in contradiction with previous
condensation, astrophysics or laser dynarf8¢samong oth-  work [24], where it was claimed that stable vortex states in
ers[4]. In optics[5], a vortex with chargé takes the form of finite-size beams exist only for the valuesl,2. Forl=3, a
a black spot surrounded by a light distribution. Around thepersistent weak instability was found which was also sup-
dark hole, the phase varies from zero tel 2These defects posed to exist for higher values of the angular momentum.
appear spontaneously in light propagation through turbulent In the next section, we will analyze the cubic-quintic non-
media and can also be produced by appropriately shining #near model, finding numerically the stationary states for a
computer-generated hologrdi®]. The trace of vortices in a Wwide range of the angular momentungup to 50 and de-
light field is a characteristic “fork-pattern” interferogram scribing their particular properties. Then, we will calculate
produced by superposition with a tilted planar wave. analytically, by means of the variational method, the critical

The first experimental works on optical wavefront dislo- values of the propagation constant and peak amplitude that
cations were carried out in the 1980s, in the context of adapsharacterize the domain of existence of vortices. Finally, we
tive systems, where phase singularities were a severe prowll perform an azimuthal stability analysis to determine the
lem for image reconstruction techniqué&g. Since then, they domain zone where stable states can be found.
have been studied, among other fields, in optical tweezing
[8], particle trappind9], laser cavitieg10], optical intercon-
nectors[11], or even to perform N-bit quantum computers Il. THE MODEL
[12].

Concerning light vortices in the nonlinear regifie], the
first theoretical work analyzed their stability in Gaussian-like
distributions propagating in optical Kerr materigts4]. It
was found for a cubic self-focusing refractive index that a
beam of finite size will always filament under the action of a
phase dislocation. This also applies to saturable self-focusing ] ) ) 4
nonlinearities[15]. On the other hand, vortex states were = + VW + (N[ W[° - ny[¥[H ¥ =0, 1)
predicted and found experimentally for self-defocusing ma-
terials both in the Kerr case for continuous backgrof®]  whereV? =r=2#/g¢?+r g/ or + 2/ or? is the transverse La-
and in the saturable case with finite size bedig. placian operator in cylindrical coordinatés ¢,z). The real

It was shown inf18] that stable vortex states witk1 can  positive constants, andn, are given, respectively, by the
be obtained as stationary states of the propagation of a lasg’ >0 andy® <0 components of the nonlinear optical sus-

Let us start by writing the equation for laser beam propa-
gation alongz in an optical cubic-quintic material. For
paraxial propagation, the equation for the beam envetbpe
is a nonlinear Schroédinger equatigNLSE), which in nor-
malized units takes the form
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FIG. 2. Maximum amplitude of the stationary states vs propa-
gation constant for angular momenta0,1,2,3,10, and 50. All the
curves join at the poinA=A.,=0.866,8=6.,=0.1875. Inset: detail
of the zone close t@;, where the calculations become delicate.
Normalized units were used in all the axes.

FIG. 1. Numerically calculated radial amplitude profiles of the
stationary states of Eq.3) for 1=3, 4, 10, and 50 withB/ B,
=0.1,0.5,0.9, and 0.99. In all the casgsn,=1. Normalized units
were used in all the axes.

around 0.8, keeping approximately the Gaussian shape.
ceptibility and characterize the dependence of the refractivEor larger values of the propagation constant, the beam flux
index on the intensity of the beam. i,<0, a Gaussian grows rapidly withg and the peak amplitude of the distribu-
beam of high enough power will undergo collapse after selflion saturates due to the effectif, reaching asymptotically
focusing[25]. The effect of a negative fifth-order suscepti- the valueAg,, which is slightly below the maximum ampli-
bility (-n, term) combined with diffraction will stop the col- tu_de. Thus, high power.beam.s shoyv spanal light distributions
lapsing tendency for high powers, yielding a stable two-With fla_ltted tops in their profiles, similar to those of hyper-
dimensional condensed state of light with surface tensiofP@ussian functionf26,27.

properties similar to those of usual liquif9,20,23. We must stress the intriguing fact that bggh andA;, do
We are interested in stationary states with radial symmeD0t depend on the value of the topological charge. This is
try and angular momentutnof the form shown in Fig. 2, .where the maximum amplitude has been
o plotted as a function oB. In the inset, the zong~= 3., can
W(r,$,2) = (r)e' PP, (20 be seen in detail. As can be appreciated, whatever the value

pf | is, all the curves tend to join at the same point. This

andy(r) is the radial envelope of the field. After substitution means thaf[ the critical value of the propa_gatior_w constant and
of Eq.(2) in Eq. (1), the following z-independent equation is peak amplitude only depend on the nonlinearity and not on
obtaiﬁed forgb(r')' ' the angular momentum. We will revise this result in our ana-

lytical study of the next section.
, 12 It also worth mentioning that the central hole increases its
~BY+Viy- ﬁ‘ﬂ"’ oy =gy =0, ) size with the topological charge for a fixed value@fas can
be seen comparing the profiles in Fig. 1 1er3,4 with |
where V,Zzazl&r2+(l/r)<9/ar is the radial part of the =10,50. This is also clearly shown in Fig. 3, where we plot
Laplace operator. several eigenstates with values of the angular momentum
For a given integer value df a continuum of eigenstates ranging froml=1 up tol=9, with propagation constam
with y— 0 asr — o can be obtained by solving numerically =0.958.,. Besides, if 8 grows, the radius of the hole in-
Eqg. (3). Close to the origin, the shapes follow the linear creases. As the value @f approacheg,,, the thickness of
regime with or'. To this aim, we have used a standardthe external ring grows faster than the internal hole, and the
relaxation technique. The profiles of the eigenstates for sewfinal result takes the asymptotic form of a dark spot sur-
eral values ofl and 8 are plotted in Fig. 1 for the case of rounded by a larger ring of light of almost constant shape
n,=n,=1. We particularly show states with-3 andl=4  which ends abruptly at a given radius. This behavior can be
since these were previously found unstable in previous worlassessed by looking at Fig. 4, where the dimensions of the
[24], as well as two examples of large angular momentuninternal hole and the ring thickness are plotted versus the
stateg1=10 andl =50). In all cases, the stationary states canpropagation constant for the particular cas¢=0f0. A loga-
only be found for values of3 between zero and a fixed rithmic scale was chosen to highlight that the growth in the
critical value B, [18], which does not depend dn ring thickness clearly dominates over the hole radius from a
It can be appreciated in the graphs that valueg below  certain value of the propagation constant. In the inset, it is
0.58., yield light distributions with smooth and wide also shown, as an example, one of the stationary states with
Gaussian-like shapes. A8 is incremented, the beam flux B very close toB,, showing the huge ring whose width
grows and the spatial profiles narrow, yielding a minimumclearly exceeds the hole radius and presents a practically
thickness of the ring of the stationary state for valuegof rectangular shape.

wheref is the nonlinear phase shift or propagation constan
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ian (£) with respect to each paramet@8], we obtain the
following conditions:
4

"’ +2pe Das_pog (6)
rg-w? 2 3 o
12 <r0+w)
—In -n,A>-n,A*+ 8=0, 7
2rgw \rg—w 2 * p 0

where Eq(6) is obtained from the minimization with respect
to rp andw (the same condition is obtained for both param-
etery, and Eq.(7) follows from minimization with respect to
parameteA. In the limit whenB— B, the first term of both
equations vanishes. This follows by taking into account that
ro>w should always be satisfigdtherwise there would be
no holg. Then we have3-w?>rj— = and (r3-w?)™—0,
consequently the first term of E¢p) is zero. For Eq(7), the
, , , argument of the logarithm tends to infinity as it is easily

FIG. 3. (Color onling Azimuthal eigenstates of Eq2) for | geqyced from the fact that the ring width grows faster than
=110 9 with 5=0.955. the hole radius andy>w [(rg+w)/(ro—w)>2w/(ro—w)
—oc]. However, this term diverges logarithmically, mean-
while the denominator goes to infinity quadraticalhroduct

To explain the properties of the above light distributions,r,w), and consequently the whole term tends to zero. Finally,
we have performed a variational analyg26,27. It is easy  we can solve the equations 8¢, and ., to obtain

IIl. VARIATIONAL ANALYSIS

to demonstrate that the stationary system described by the 12
model (3) can be obtained from the following Lagrangian A, = (ﬁ) ®)
function: © \dn,)
dzﬁ)z (I2 ) n, , ng
L=n\|—] +|5~ - =yt - =y 4 2
16n,

Now assuming a rectangular shape of the stationary states for ) ) ) ]
values of3 close to,, (see Fig. ], we choose a trial func- For the particular case considered in the numerical calcula-

tion 4,(r) centered at, with amplitude A and width 2y,  tions displayed in Figs. 1 and 2, i.e., takeg=n,=1, the
given by values obtained for the critical parameters arg,

=0.866 025 ang3,,=0.1875. The comparison of these ana-
A - =sw Iytical results with the numerical calculations shows an ex-
lzbv(r) - (5) H
0, |r—rg>w. cellent agreement, since both values are exactly those

o , . guessed numericallgsee Fig. 2. This good result is due to
Thusr,, A, andw are the variational parameters. Using this e choice of the trial function, which fits almost exactly with
trial function and minimizing the average over the Lagrang-the numerical solution for values close to the critical point.

10000 IV. STABILITY ANALYSIS
1 1
2 : In order to test the stability of the stationary states, we
2 05 fing thickness / calculated the growth rates of small azimuthal perturbations
E N n to find out the value of3 at which they vanish. Additionally,
1000 , ]|  hole radius in order to assess the accuracy of the previous analysis, we

o 2000 4000 6000 s propagated somanstableeigenstates with a split-step Fou-
' rier method and found their splitting distances. The inverse
of these values should coincide, except for a constant scale

radial dimension

hole radius

________ 5 factor, with the dominant perturbation eigenvalues calculated

1003 --==7" ring thickness A in the azimuthal instability analysis. Finally, we have also
e — : simulated other kinds of perturbations such as total reflection
0185 0-188 0.187 0.188 at the boundary between a cubic-quintic material and air. As

propagation constant, B . . .
we will see below, the eigenstates show robust behavior

FIG. 4. Dependence of the internal hole radicsntinuous ling ~ @gainst these collisions and preserve their angular momen-
and ring thicknesgdashed lingwith the propagation constagtin ~ tum, although strong oscillations are observed.
the vicinity of g8, for eigenstates withh=10. Inset: example of a To carry out the perturbation analysis, we add to the origi-
stationary state with=10 and3=0.99983,. Normalized units were nal eigenstate a smafl-order azimuthal perturbation func-
used in all the axes. tion [15,29,
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W(r,,2) =[ 1) + f(r,26P? + h(r,2) e P¢] 1452
(10)

wheref(r,z) andh(r,z) are the small complex components

4
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of the eigenstate of thp-order azimuthal perturbation. Our
interest is to seek those functions which grow exponentially
with z, so we assume that they have the form

perturb. eigenvalue, Re §

0.00 =

where the parameted, is the perturbation eigenvalue. In this
way, the real part o5, constitutes the growth rate of this
perturbation. If we replace the perturbed eigengtate (10)]
into Eq.(1) and keep only the first-order termsfifr,z) and
h(r,z) (linearization, we obtain the following set of coupled
differential equations for those componentér,z) and

f(r,2) =[f4(r) +if () ], 1y £ 5
n(r,2) = [y(n) + ihy(n)Je %, 1 3

™ 0.000 LA L L L B |
0.20  0.1600 Q.1625 0.1650 0.167!
propagation constant, B

LI L L B T
Q.05 0.10 0.15 0.1700

propagation constant, B

FIG. 5. Growth rate of the azimuthal perturbation £siIn (a)
and (b), the angular momentum is fixdtl=3 for (a), [=4 for (b)]

h(r,2): and the values of the perturbation ordgeare indicated by labels
e near the curves. Iiic) the growth rate for the perturbations with

of 5 (I+ p)2 . p=2 for1=1,2,3,4,10, and 50 arglotted. In(d), a comparison

i+ Vif-———f+Q(f +R(Yh =0, (13  petween the inverse of the splitting distaridets andp=2 pertur-

Jaz r . . . .
bation eigenvalue for unstable states wlith3 is shown. Normal-
Jh (I - p)? ized units were used in all the axes.
122+ vin- r—zph+ Qph+RWHF =0, (14)

=10 andl=50. As can be appreciated in these plots, there
__ _ - ists a window between the vanishing point and the limit
where  Q(y)=-B+(2n=3n,|yfd)[yf> and R(p=(n, XS . . .
-2n,/41?)|4/2. The solution of this equation system is ob- value for 5 (8=F,), which proves the existence of a stabil-
tained using a Crank-Nicholson scheme to propagate an in ty zone close o the critical point containing an infinite num-
tial arbitrary guess until the shape of each component do - of stable elgenstate_s. N_ot_e that_thls window narrows for
not change perceptibly29]. According to the component igh values ot but remains finite. A$ increases, the point at

dependence om[Eq. (11)], the value of the growth rate can which the perturbation vanishes approaches asymptotically
be calculated at each pr(;pagation step by the critical point. However, we believe that the critical point

1 | [f(r,z+ A2)|?
I LAl
fr,2f

2Az

where Az is the propagation step and the functit(n,z) is
evaluated in a fixed point, usually that which corresponds
to the maximum. Besides, the functions can be rescaled at
each step by this maximum value to avoid an overflow. The
propagation is carried out until the value of the perturbation
growth rate does not change any more, which indicates that
convergence was reached. This allows us to obtain the
growth rates R@,) for different order perturbations versus
the propagation constant, as depicted in Fig. 5.

The growth rates for vortices with angular momentum
=3 andl=4 are shown in Figs.(8) and %b). As can be seen,
all of them fall to zero for a value oB below B, which
implies the existence of a stability window, in contradiction
with previous calculations where all the states with 2
were found to be unstablg24]. Our results ShO\_N th?‘ the FIG. 6. (Color onling Numerical simulation of the total reflec-
maximum growth r_ate corresponds to _perturbatlon elgenvalﬁon at a planar boundary between a cubic-quintic and a linear me-
ues withp=2l, Wh'Ch allows us to estimate the number Qf dia (air). For this stationary state, the angular momentutwié and
filamentsN resulting from the breakup of the unstable vorti- \he propagation constapt 0.953,,. The top image is an isosurface
ces (N=2l). Besides this, the perturbatign=2 has been of the propagating beam. The boundary between the nonlinear ma-
proven to be the most persistent, despite the value of thgrial and air is the plang=0. The imagega)~c) correspond to
angular momentum. Hence, in Fig(ch we plot the curves different transversal cutofféntensity profiles of the beam at dif-
associated to this perturbation for different values of the anferent values of the propagation distareéNormalized units were
gular momentum, including the cases correspondind to used in all the axes.

Res,= (15)
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itself is never reached, even for arbitrarily high values of thelar momenta. For the simulation, we have used a split-step
topological charge. Fourier method with a 528 520 grid. The idea is similar to
When 8 is close tof,,, the azimuthal analysis becomes the test of surface tension properties of “liquid light beams”
very delicate and it has to be carried out in a very carefufrom Ref.[23]. As can be seen in Fig. 6, a beam with4
way. In fact, convergence takes a much longer distance, angbes not split after the total reflection, although a strong
an erroneous final result is obtained if the number of samplegscillation is observed. This is more proof of the stability of
and the propagation step are not chosen appropriately. In thigese nonlinear waves. We must notice that depending on the
sense, combining the analysis with direct calculations of the,cigence angle, a strong deformation of the beam can be
splitting distance of the unstable eigenstates is definitivelynduced, which can yield a split or a decay of the inner

useful. In Fig. %d), there is an enlargement of the region of : : :
Fig. 5c) where the perturbation fd=3 drops to zero. The vortex into several defects with lower topological charges

points obtained propagating the eigenstates and taking tf{ego]'
inverse of the distance where they split are also plotted.
These values were subsequently scaled by the same constant
value to compare with the perturbation eigenvalue curve. As
can be appreciated, the values obtained from these propaga- The main conclusions that can be derived from the
tion experiments fall to zero with the same slope as the perpresent work are the following. First, stable azimuthal finite-
turbation eigenvalues do. When the stability analysis is nosize beams with arbitrary very large angular momentum can
performed with enough accuracy, a more steady behavior adxist in optical materials with self-focusingubic) and de-
the curve appears, which implies that the eigenvalue falls téocusing(quintic) nonlinearity. Second, the shapes of these
zero at a higher value oB. This allows us to assess the beams tend asymptotically to squarelike ring profiles with
validity of the perturbation analysis. bigger dark holes for higher values of the angular momen-
As a final test of the stability of the eigenstates, we havaum. And finally, the critical values of the propagation con-
simulated the total reflection at a planar boundary between stant and amplitude do not depend on the angular momentum
cubic-quintic material and air for beams with different angu-of the beam.
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