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We show the existence of square-shaped optical vortices with a large value of the angular momentum hosted
in finite-size laser beams which propagate in nonlinear media with a cubic-quintic nonlinearity. The light
profiles take the form of rings with sharp boundaries and variable sizes depending on the power carried. Our
stability analysis shows that these light distributions remain stable when they propagate, probably for unlimited
values of the angular momentum, provided the hosting beam is wide enough. This happens if the peak
amplitude approaches a critical value which only depends on the nonlinear refractive index of the material. A
variational approach allows us to calculate the main parameters involved. Our results add extra support to the
concept of surface tension of light beams that can be considered as a trace of the existence of a liquid of light.

DOI: 10.1103/PhysRevE.70.066605 PACS number(s): 42.65.Tg, 42.65.Jx

I. INTRODUCTION

In wave mechanics, a vortex is a screw phase dislocation,
or defect[1], where the amplitude of the field vanishes. The
phase around the singularity has an integer number of wind-
ings, l, which plays the role of an angular momentum. For
fields with nonvanishing boundary conditions, this number is
a conserved quantity and governs the interactions between
vortices as if they were endowed with electrostatic charges
[2]. Thus,l is usually called the “topological charge” of the
defect.

Vortices are present in very different branches of physics,
such as fluid mechanics, superconductivity, Bose-Einstein
condensation, astrophysics or laser dynamics[3], among oth-
ers[4]. In optics[5], a vortex with chargel takes the form of
a black spot surrounded by a light distribution. Around the
dark hole, the phase varies from zero to 2pl. These defects
appear spontaneously in light propagation through turbulent
media and can also be produced by appropriately shining a
computer-generated hologram[6]. The trace of vortices in a
light field is a characteristic “fork-pattern” interferogram
produced by superposition with a tilted planar wave.

The first experimental works on optical wavefront dislo-
cations were carried out in the 1980s, in the context of adap-
tive systems, where phase singularities were a severe prob-
lem for image reconstruction techniques[7]. Since then, they
have been studied, among other fields, in optical tweezing
[8], particle trapping[9], laser cavities[10], optical intercon-
nectors[11], or even to perform N-bit quantum computers
[12].

Concerning light vortices in the nonlinear regime[13], the
first theoretical work analyzed their stability in Gaussian-like
distributions propagating in optical Kerr materials[14]. It
was found for a cubic self-focusing refractive index that a
beam of finite size will always filament under the action of a
phase dislocation. This also applies to saturable self-focusing
nonlinearities[15]. On the other hand, vortex states were
predicted and found experimentally for self-defocusing ma-
terials both in the Kerr case for continuous background[16]
and in the saturable case with finite size beams[17].

It was shown in[18] that stable vortex states withl =1 can
be obtained as stationary states of the propagation of a laser

beam through cubic-quintic optical materials[19–21]. This
kind of nonlinearity is characterized by thexs3d.0 and
xs5d,0 components of the nonlinear optical susceptibility
and changes from self-focusing to self-defocusing at a given
intensity [22]. It has been recently shown that a gas-liquid
phase transition takes place in light beams propagating in
this type of materials[23].

In this work, we will show that stable vortex states with a
huge value of the angular momentum exist and their peak
amplitude and propagation constant tend asymptotically, as
the beam flux is increased, to values that do not depend onl.
In this way, our results are in contradiction with previous
work [24], where it was claimed that stable vortex states in
finite-size beams exist only for the valuesl =1,2. Forl =3, a
persistent weak instability was found which was also sup-
posed to exist for higher values of the angular momentum.

In the next section, we will analyze the cubic-quintic non-
linear model, finding numerically the stationary states for a
wide range of the angular momentuml (up to 50) and de-
scribing their particular properties. Then, we will calculate
analytically, by means of the variational method, the critical
values of the propagation constant and peak amplitude that
characterize the domain of existence of vortices. Finally, we
will perform an azimuthal stability analysis to determine the
domain zone where stable states can be found.

II. THE MODEL

Let us start by writing the equation for laser beam propa-
gation along z in an optical cubic-quintic material. For
paraxial propagation, the equation for the beam envelopeC
is a nonlinear Schrödinger equation(NLSE), which in nor-
malized units takes the form

i
] C

] z
+ ¹'

2 C + sn2uCu2 − n4uCu4dC = 0, s1d

where¹'
2 =r−2]2/]f2+r−1] /]r +]2/]r2 is the transverse La-

placian operator in cylindrical coordinatessr ,f ,zd. The real
positive constantsn2 and n4 are given, respectively, by the
xs3d.0 andxs5d,0 components of the nonlinear optical sus-
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ceptibility and characterize the dependence of the refractive
index on the intensity of the beam. Ifn4ø0, a Gaussian
beam of high enough power will undergo collapse after self-
focusing [25]. The effect of a negative fifth-order suscepti-
bility (−n4 term) combined with diffraction will stop the col-
lapsing tendency for high powers, yielding a stable two-
dimensional condensed state of light with surface tension
properties similar to those of usual liquids[19,20,23].

We are interested in stationary states with radial symme-
try and angular momentuml of the form

Csr,f,zd = csrdeilfeibz, s2d

whereb is the nonlinear phase shift or propagation constant
andcsrd is the radial envelope of the field. After substitution
of Eq. (2) in Eq. (1), the followingz-independent equation is
obtained forcsrd:

− bc + ¹r
2c −

l2

r2c + n2c3 − n4c5 = 0, s3d

where ¹r
2;]2/]r2+s1/rd] /]r is the radial part of the

Laplace operator.
For a given integer value ofl, a continuum of eigenstates

with c→0 asr →` can be obtained by solving numerically
Eq. (3). Close to the origin, the shapes follow the linear
regime with c~ r l. To this aim, we have used a standard
relaxation technique. The profiles of the eigenstates for sev-
eral values ofl and b are plotted in Fig. 1 for the case of
n2=n4=1. We particularly show states withl =3 and l =4
since these were previously found unstable in previous work
[24], as well as two examples of large angular momentum
states(l =10 andl =50). In all cases, the stationary states can
only be found for values ofb between zero and a fixed
critical valuebcr [18], which does not depend onl.

It can be appreciated in the graphs that values ofb below
0.5bcr yield light distributions with smooth and wide
Gaussian-like shapes. Asb is incremented, the beam flux
grows and the spatial profiles narrow, yielding a minimum
thickness of the ring of the stationary state for values ofb

around 0.8bcr, keeping approximately the Gaussian shape.
For larger values of the propagation constant, the beam flux
grows rapidly withb and the peak amplitude of the distribu-
tion saturates due to the effect ofn4, reaching asymptotically
the valueAcr, which is slightly below the maximum ampli-
tude. Thus, high power beams show spatial light distributions
with flatted tops in their profiles, similar to those of hyper-
Gaussian functions[26,27].

We must stress the intriguing fact that bothbcr andAcr do
not depend on the value of the topological charge. This is
shown in Fig. 2, where the maximum amplitude has been
plotted as a function ofb. In the inset, the zoneb<bcr can
be seen in detail. As can be appreciated, whatever the value
of l is, all the curves tend to join at the same point. This
means that the critical value of the propagation constant and
peak amplitude only depend on the nonlinearity and not on
the angular momentum. We will revise this result in our ana-
lytical study of the next section.

It also worth mentioning that the central hole increases its
size with the topological charge for a fixed value ofb, as can
be seen comparing the profiles in Fig. 1 forl =3,4 with l
=10,50. This is also clearly shown in Fig. 3, where we plot
several eigenstates with values of the angular momentum
ranging from l =1 up to l =9, with propagation constantb
=0.95bcr. Besides, ifb grows, the radius of the hole in-
creases. As the value ofb approachesbcr, the thickness of
the external ring grows faster than the internal hole, and the
final result takes the asymptotic form of a dark spot sur-
rounded by a larger ring of light of almost constant shape
which ends abruptly at a given radius. This behavior can be
assessed by looking at Fig. 4, where the dimensions of the
internal hole and the ring thickness are plotted versus the
propagation constant for the particular case ofl =10. A loga-
rithmic scale was chosen to highlight that the growth in the
ring thickness clearly dominates over the hole radius from a
certain value of the propagation constant. In the inset, it is
also shown, as an example, one of the stationary states with
b very close tobcr, showing the huge ring whose width
clearly exceeds the hole radius and presents a practically
rectangular shape.

FIG. 1. Numerically calculated radial amplitude profiles of the
stationary states of Eq.(3) for l =3, 4, 10, and 50 withb /bcr

=0.1,0.5,0.9, and 0.99. In all the casesn2=n4=1. Normalized units
were used in all the axes.

FIG. 2. Maximum amplitude of the stationary states vs propa-
gation constant for angular momental =0,1,2,3,10, and 50. All the
curves join at the pointA=Acr=0.866,b=bcr=0.1875. Inset: detail
of the zone close tobcr where the calculations become delicate.
Normalized units were used in all the axes.
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III. VARIATIONAL ANALYSIS

To explain the properties of the above light distributions,
we have performed a variational analysis[26,27]. It is easy
to demonstrate that the stationary system described by the
model (3) can be obtained from the following Lagrangian
function:

L = rHSdc

dr
D2

+ S l2

r2 − bDc2 −
n2

2
c4 −

n4

3
c6J . s4d

Now assuming a rectangular shape of the stationary states for
values ofb close tobcr (see Fig. 1), we choose a trial func-
tion cvsrd centered atr0 with amplitudeA and width 2w,
given by

cvsrd = HA, ur − r0u ø w

0, ur − r0u . w.
s5d

Thus r0, A, andw are the variational parameters. Using this
trial function and minimizing the average over the Lagrang-

ian kLl with respect to each parameter[28], we obtain the
following conditions:

l2

r0
2 − w2 +

n2

2
A2 −

n4

3
A4 − b = 0, s6d

l2

2r0w
lnS r0 + w

r0 − w
D − n2A

2 − n4A
4 + b = 0, s7d

where Eq.(6) is obtained from the minimization with respect
to r0 andw (the same condition is obtained for both param-
eters), and Eq.(7) follows from minimization with respect to
parameterA. In the limit whenb→bcr, the first term of both
equations vanishes. This follows by taking into account that
r0.w should always be satisfied(otherwise there would be
no hole). Then we haver0

2−w2. r0
2→` and sr0

2−w2d−1→0,
consequently the first term of Eq.(6) is zero. For Eq.(7), the
argument of the logarithm tends to infinity as it is easily
deduced from the fact that the ring width grows faster than
the hole radius andr0.w fsr0+wd / sr0−wd.2w/ sr0−wd
→`g. However, this term diverges logarithmically, mean-
while the denominator goes to infinity quadratically(product
r0w), and consequently the whole term tends to zero. Finally,
we can solve the equations forAcr andbcr to obtain

Acr = S3n2

4n4
D1/2

, s8d

bcr =
3n2

2

16n4
. s9d

For the particular case considered in the numerical calcula-
tions displayed in Figs. 1 and 2, i.e., takenn2=n4=1, the
values obtained for the critical parameters areAcr
=0.866 025 andbcr=0.1875. The comparison of these ana-
lytical results with the numerical calculations shows an ex-
cellent agreement, since both values are exactly those
guessed numerically(see Fig. 2). This good result is due to
the choice of the trial function, which fits almost exactly with
the numerical solution for values close to the critical point.

IV. STABILITY ANALYSIS

In order to test the stability of the stationary states, we
calculated the growth rates of small azimuthal perturbations
to find out the value ofb at which they vanish. Additionally,
in order to assess the accuracy of the previous analysis, we
propagated someunstableeigenstates with a split-step Fou-
rier method and found their splitting distances. The inverse
of these values should coincide, except for a constant scale
factor, with the dominant perturbation eigenvalues calculated
in the azimuthal instability analysis. Finally, we have also
simulated other kinds of perturbations such as total reflection
at the boundary between a cubic-quintic material and air. As
we will see below, the eigenstates show robust behavior
against these collisions and preserve their angular momen-
tum, although strong oscillations are observed.

To carry out the perturbation analysis, we add to the origi-
nal eigenstate a smallp-order azimuthal perturbation func-
tion [15,29],

FIG. 3. (Color online) Azimuthal eigenstates of Eq.(2) for l
=1 to 9 with b=0.95bcr.

FIG. 4. Dependence of the internal hole radius(continuous line)
and ring thickness(dashed line) with the propagation constantb in
the vicinity of bcr for eigenstates withl =10. Inset: example of a
stationary state withl =10 andb=0.9998bcr. Normalized units were
used in all the axes.
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C̃sr,f,zd = fcsrd + fsr,zdeipf + hsr,zde−ipfgeislf+bzd,

s10d

where fsr ,zd and hsr ,zd are the small complex components
of the eigenstate of thep-order azimuthal perturbation. Our
interest is to seek those functions which grow exponentially
with z, so we assume that they have the form

fsr,zd = ff1srd + i f 2srdgedpz, s11d

hsr,zd = fh1srd + ih2srdge−dp
* z, s12d

where the parameterdp is the perturbation eigenvalue. In this
way, the real part ofdp constitutes the growth rate of this
perturbation. If we replace the perturbed eigenstate[Eq. (10)]
into Eq. (1) and keep only the first-order terms infsr ,zd and
hsr ,zd (linearization), we obtain the following set of coupled
differential equations for those componentsfsr ,zd and
hsr ,zd:

i
] f

] z
+ ¹r

2f −
sl + pd2

r2 f + Qscdf + Rscdh* = 0, s13d

i
] h

] z
+ ¹r

2h −
sl − pd2

r2 h + Qscdh + Rscdf* = 0, s14d

where Qscd;−b+s2n2−3n4ucu2ducu2 and Rscd;sn2

−2n4ucu2ducu2. The solution of this equation system is ob-
tained using a Crank-Nicholson scheme to propagate an ini-
tial arbitrary guess until the shape of each component does
not change perceptibly[29]. According to the component
dependence onz [Eq. (11)], the value of the growth rate can
be calculated at each propagation step by

Redp =
1

2Dz
ln

ufsr,z+ Dzdu2

ufsr,zdu2
, s15d

whereDz is the propagation step and the functionfsr ,zd is
evaluated in a fixed pointr, usually that which corresponds
to the maximum. Besides, the functions can be rescaled at
each step by this maximum value to avoid an overflow. The
propagation is carried out until the value of the perturbation
growth rate does not change any more, which indicates that
convergence was reached. This allows us to obtain the
growth rates Resdpd for different order perturbations versus
the propagation constant, as depicted in Fig. 5.

The growth rates for vortices with angular momentuml
=3 andl =4 are shown in Figs. 5(a) and 5(b). As can be seen,
all of them fall to zero for a value ofb below bcr, which
implies the existence of a stability window, in contradiction
with previous calculations where all the states withl .2
were found to be unstable[24]. Our results show that the
maximum growth rate corresponds to perturbation eigenval-
ues withp<2l, which allows us to estimate the number of
filamentsN resulting from the breakup of the unstable vorti-
ces sN<2ld. Besides this, the perturbationp=2 has been
proven to be the most persistent, despite the value of the
angular momentum. Hence, in Fig. 5(c) we plot the curves
associated to this perturbation for different values of the an-
gular momentum, including the cases corresponding tol

=10 andl =50. As can be appreciated in these plots, there
exists a window between the vanishing point and the limit
value forb sb=bcrd, which proves the existence of a stabil-
ity zone close to the critical point containing an infinite num-
ber of stable eigenstates. Note that this window narrows for
high values ofl but remains finite. Asl increases, the point at
which the perturbation vanishes approaches asymptotically
the critical point. However, we believe that the critical point

FIG. 6. (Color online) Numerical simulation of the total reflec-
tion at a planar boundary between a cubic-quintic and a linear me-
dia (air). For this stationary state, the angular momentum isl =4 and
the propagation constantb=0.95bcr. The top image is an isosurface
of the propagating beam. The boundary between the nonlinear ma-
terial and air is the planey=0. The images(a)–(c) correspond to
different transversal cutoffs(intensity profiles) of the beam at dif-
ferent values of the propagation distancez. Normalized units were
used in all the axes.

FIG. 5. Growth rate of the azimuthal perturbation vsb. In (a)
and (b), the angular momentum is fixed[l =3 for (a), l =4 for (b)]
and the values of the perturbation orderp are indicated by labels
near the curves. In(c) the growth rate for the perturbations with
p=2 for l =1,2,3,4,10, and 50 areplotted. In (d), a comparison
between the inverse of the splitting distance(dots) andp=2 pertur-
bation eigenvalue for unstable states withl =3 is shown. Normal-
ized units were used in all the axes.
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itself is never reached, even for arbitrarily high values of the
topological charge.

When b is close tobcr, the azimuthal analysis becomes
very delicate and it has to be carried out in a very careful
way. In fact, convergence takes a much longer distance, and
an erroneous final result is obtained if the number of samples
and the propagation step are not chosen appropriately. In this
sense, combining the analysis with direct calculations of the
splitting distance of the unstable eigenstates is definitively
useful. In Fig. 5(d), there is an enlargement of the region of
Fig. 5(c) where the perturbation forl =3 drops to zero. The
points obtained propagating the eigenstates and taking the
inverse of the distance where they split are also plotted.
These values were subsequently scaled by the same constant
value to compare with the perturbation eigenvalue curve. As
can be appreciated, the values obtained from these propaga-
tion experiments fall to zero with the same slope as the per-
turbation eigenvalues do. When the stability analysis is not
performed with enough accuracy, a more steady behavior of
the curve appears, which implies that the eigenvalue falls to
zero at a higher value ofb. This allows us to assess the
validity of the perturbation analysis.

As a final test of the stability of the eigenstates, we have
simulated the total reflection at a planar boundary between a
cubic-quintic material and air for beams with different angu-

lar momenta. For the simulation, we have used a split-step
Fourier method with a 5203520 grid. The idea is similar to
the test of surface tension properties of “liquid light beams”
from Ref. [23]. As can be seen in Fig. 6, a beam withl =4
does not split after the total reflection, although a strong
oscillation is observed. This is more proof of the stability of
these nonlinear waves. We must notice that depending on the
incidence angle, a strong deformation of the beam can be
induced, which can yield a split or a decay of the inner
vortex into several defects with lower topological charges
[30].

V. CONCLUSIONS

The main conclusions that can be derived from the
present work are the following. First, stable azimuthal finite-
size beams with arbitrary very large angular momentum can
exist in optical materials with self-focusing(cubic) and de-
focusing (quintic) nonlinearity. Second, the shapes of these
beams tend asymptotically to squarelike ring profiles with
bigger dark holes for higher values of the angular momen-
tum. And finally, the critical values of the propagation con-
stant and amplitude do not depend on the angular momentum
of the beam.
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